Exploiting lights momentum to boost laser wakefield accelerators towards high field physics

J. Vieira, J.L Martins, U. Sinha, M. Vranic, T. Grismayer, R.A. Fonseca, L.O. Silva

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal

http://epp.ist.utl.pt[/jorgevieira]

Contents

- Generation of circularly/elliptically polarised betatron x-rays
- Orbital angular momentum laser drivers for high gradient positron acceleration
- Radiation reaction and pair production driven by ultra-intense lasers
- Conclusions

Contents

- Generation of circularly/elliptically polarised betatron x-rays
- Orbital angular momentum laser drivers for high gradient positron acceleration
- Radiation reaction and pair production driven by ultra-intense lasers
- Conclusions

Just like any particle, light can also carry momentum

In addition to linear momentum, light also carries angular momentum

Circular pc Conservation of angular momentum

Beth's experiments showed that light's angular momentum exerted a torque on matter.

Assume two values: rigleft handed (spin -1)

Can a circularly polarised laser driver exert a torque on relativistic electrons which in turn will produce circularly polarised x-rays?

osiris framework

- Massivelly Parallel, Fully Relativistic
 Particle-in-Cell (PIC) Code
- Visualization and Data Analysis
 Infrastructure
- · Developed by the osiris.consortium
 - \Rightarrow UCLA + IST

UCLA

Ricardo Fonseca

ricardo.fonseca@tecnico.ulisboa.pt

Frank Tsung

tsung@physics.ucla.edu

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

- Scalability to ~ 1.6 M cores
- · SIMD hardware optimized
 - Parallel I/O
- Dynamic Load Balancing
- QED module
- Particle merging
- GPGPU support
- Xeon Phi support

Helical betatron trajectories can lead to circularly polarised x-rays

jRa Polarisation from relativistic charges

Relativistic electron far fi<mark>eld: helical e-trajectories can lead to circular/elliptical X-rays</mark>

- Total beam polarisation is the average
 Massively parallel apologisation of leasth type am electron.
- Space and time resolved spectra and total power
- Trajectory interpolation $\langle P_c \rangle = \frac{1}{N} \Sigma_i P_i$

J. L. Martins et al Proc. of Random phase approximation: 7359, 73590V (2009) L. O. Silva et al Phys. Rev. E 59, 2273 (1999)

Jorge Vieira | Workshop High Energy Density Science | January 20, 2016

The angular momentum of light can exert a torque on relativistic plasma electrons

DLA leads to helical bunch currents and trajectories

DLA leads to helical bunch currents and trajectories

Betatron x-ray polarisation can be adjusted by driver polarisation

Circularly polarised x-rays

Polarisation control

φ is the phase difference between the two orthogonally polarised drivers

We may be able to control the **spin angular momentum** of x-ray photons for high energy density science

Lights' orbital angular momentum: a new twist for plasma accelerators

- Generation of circularly/elliptically polarised betatron x-rays
- Orbital angular momentum laser drivers for high gradient positron acceleration
- Radiation reaction and pair production driven by ultra-intense lasers
- Conclusions

The orbital angular momentum of light is an unexplored degree of freedom for laser-plasma interactions

Production and amplification of OAM lasers in plasmas: J. Vieira, R. Trines et al Nat. Comms, accepted (2016)

Applications

- Astrophysics
- Ultrafast optical communications
- Nano particle manipulation

Laser-plasma accelerators

Shaped electron/x-ray beams

Ion acceleration (maybe reduce divergence)

High gradient positron acceleration

Laguerre-Gaussian lasers drive doughnut plasma waves in strongly non-linear regimes

The onset of positron focusing and acceleration occurs when the inner sheath of the doughnut bubble merges on-axis

Onset of positron focusing

e+ can accelerate at doughnut front

3D simulations show positron acceleration in strongly non-linear regimes

3D simulation of e+ acceleration

e+ bunch is quasi mono energetic

Contents High field physics: when each single photon does matter in vacuum

- Generation of circularly/elliptically polarised betatron x-rays
- Orbital angular momentum laser drivers for high gradient positron acceleration
- Radiation reaction and pair production driven by ultra-intense lasers
- Conclusions

All-optical radiation reaction configuration

Identifying radiation reaction signatures in electron beam spectrum

Head-on collision in 3D with radiation reaction

LWFA electrons (I GeV) lose energy in the interaction with an intense laser (I021 W/cm2)

~40% energy loss for I GeV beam at 10²¹ W/cm²

Radiation reaction can be tested with state-of-the-art lasers in this configuration

Pairs can be produced already at $\chi = 0.6$

~ 200 pairs obtained per I 000 000 interacting electrons

M. Vranic et al ArXiv I 5 I I . 04406; submitted to NJP (2016) Jorge Vieira | Workshop High Energy Density Science | January 20, 2016

3D OSIRIS QED - colliding laser cascades at $\chi \gtrsim 1$

T. Grismayer, M. Vranic

Linear

Laser parameters

- \rightarrow a₀ = 1000, λ = 1 um,
- \rightarrow $\tau = 30 \text{ fs}, W_0 = 5 \text{ um}$

Double clockwise

- electron
- opositron
- o photon

Particles explore the whole space

Clockwise-anti clockwise

- electron
- opositron
- o photon

Particles rotate mainly in the x₂-x₃ plane

QED cascades - from the seed to full laser absorption

Analytical growth rate model + 3D full scale parameter scan

T. Grismayer, M. Vranic et. al, Submitted to PRL, ArXiv: 1511.07503

Laser absorption via QED cascades absorption model + 2D, 3D sim.

Contents

- Generation of circularly/elliptically polarised betatron x-rays
- Orbital angular momentum laser drivers for high gradient positron acceleration
- Radiation reaction and pair production driven by ultra-intense lasers
 - Conclusions

Conclusions

Betatron radiation polarisation control

- Circular/elliptical polarisation can be produced in the x-rays
- Level of polarisation controlled by laser driver polarisation
- Could be tested from Phase I onwards

Twisted lasers for LWFA

- Production of exotic particle beams with non-trivial dynamics
- High gradient positron acceleration
- Could be tested in phase I

High field physics

- Radiation reaction can be observed with today's lasers
- Pair production can be achieved with BELLAi parameters
- Could be tested in Phase II-III

